
Common Open Source 

Practices in Developing 

Cloud-Native Applications



Introduction

2

As many enterprises are trying to meet challenging business 

realities in the most cost-efficient way, they look for 

innovations and successes by becoming Cloud-Native. Open 

source technologies, as adapted to the Cloud-Native 

production environment, can be used to fulfill the demands 

created in the technology market. However, developing a good 

open source strategy that can build successful Cloud-Native 

applications is not an easy task.

This eBook aims to provide an general overview of open 

source technologies used in the era of Cloud-Native 

applications, which include containers, orchestration, and 

microservices. Further, it is dedicated to exploring some 

popular open source projects used in developing Cloud-Native 

applications and their characteristics.

Common Open Source Practices in Developing Cloud-Native Applications



Table of Contents

3Common Open Source Practices in Developing Cloud-Native Applications

Why Cloud-Native? 
· Modern Application Requirements

· Advantages of a Cloud-Native Approach

· A Cloud-Native, Open Source Approach 

Cloud-Native Technological innovations

Cloud-Native Tools Overview
· Containers

· Orchestration

· Microservices

A Closer Look at Cloud-Native Practices

Conclusion: Cloud-Native Innovations 
from an Open Source Perspective
· Open Source Collaboration Enables Innovations

· Business Advantages of Open Source
· An Open Source, Cloud-Native Future

References

· Container Technology

· Orchestration Technology

· Microservices Technology

· Putting the Technologies Together

· Deploying Microservices with Kubernetes
· Cloud-Native Innovations based on Open Source



Why Cloud-Native? 



Digital experiences have become an
instrumental part of the many activities that we
engage in today. We want applications or
services to be available at any time, be
perpetually upgraded with new savvy features,
and provide personalized experiences. These
increasingly demanding user expectations
translate into business realities that empower
enterprises to build applications that are always
available, evolving with frequent releases, and
easily scalable.

The trend for businesses today is to become
Cloud-Native, meaning developers are writing
code, testing and deploying it, and operating the
applications all in the cloud. This is because
Cloud-Native technologies enable enterprises to
build applications that are more open, portable,
scalable, and flexible than ever before.
Moreover, the term Cloud-Native has become a
buzzword that describes modern applications
that utilize cloud, microservices, containers, and
orchestration, often based on open source
software.

Modern Application Requirements

These needs have led to the emergence of
Cloud-Native software and a revolutionized
process to develop them. By migrating
applications to the cloud environment,
businesses can take advantage of the cloud
infrastructures that provide elasticity, scalability,
and on-demand access to a shared pool of
computing resources.

Advantages of a Cloud-Native Approach 
Going Cloud-Native has become the current
digital transformation trend, as companies that
adopt these technologies are gaining
competitive advantages over traditional
organizations. For example, the Cloud-Native
container technology can break down barriers in
terms of environments and realize cross-domain
collaboration between R&D and operation and
maintenance, which improves delivery efficiency
and productivity.

5Common Open Source Practices in Developing Cloud-Native Applications



Open source has become the de-facto way of
developing reliable and secure software. As we
can see cloud adoption becomes increasingly
mainstream, a Cloud-Native, open source
approach will be the new normal of application
development within many enterprises.

As expected, developers build most applications
by leveraging open source frameworks or pulling
in libraries that have been tested and proven in
many production use cases. By using open
source software, companies not only avoid
building everything from scratch, but they also
save time, money, and effort while creating more
business innovation and value.

A Cloud-Native, Open Source Approach 
This is because the collaborative nature of open
source enables a large group of developers to
instill the best of their wisdom in the open source
products that are reliable and available for the
users to constantly contribute and improve. The
open source community also provides a space
for free exchange of knowledge and expertises,
cultivating many excellent open source solutions
for Cloud-Native transformation. Moreover, the
open source software is at the forefront of
creating innovations and supporting the Cloud-
Native transformation, which will be further
discussed next.

6Common Open Source Practices in Developing Cloud-Native Applications

Cloud-Native technology can also shorten the
time businesses take to update or release new
versions, and therefore create more time for
innovation. The feature of agile application
development significantly improves delivery
speed and reduces trial and error costs, allowing
firms to cope with users’ needs and enhance
user experience effectively.

The Cloud-Native way utilizes the cloud’s full
potential and helps companies build flexible,
reliable, and loosely coupled application
systems. Each component that goes into
building Cloud-Native applications involves
different technologies and requires developers
to make optimal decisions based on their
technical and business situations.



Cloud-Native Technological Innovations



With the rise of digital transformation, Cloud-Native technologies push the traditional, distributed
approach to a new level by introducing innovations such as containers, orchestration, and
microservices, which are the major components of the Cloud-Native system.

Cloud-Native technologies have the potential to create a truly open and flexible distributed system that
can support enterprises to meet market requirements in runtime, scaling, etc.

Containers can be explained as lightweight
virtual machines that wrap applications around
and are infrastructure-independent. This means
containers can work on and be moved between
environments without affecting the applications
they host.

Containers are also lightweight, standalone
runtime environments that eliminate
inconsistencies by wrapping software up in a
minimal filesystem, containing only what it needs
to run: code, runtime, system tools, and system
libraries. Container-based applications can be
deployed quickly and consistently whether in a
private data center or the public cloud.

Additionally, containers can support the
microservices approach and agile development
processes. The microservices model divides
application functionality into separate, self-
contained services, which containers can help to
achieve. As you deploy each service of a
microservices application into a different
container, each piece can be maintained,
updated, swapped out, and modified
independently of the others.

In this way, containers enable application
portability, faster software delivery cycles, and
efficient system resources.

Container Technology

8Common Open Source Practices in Developing Cloud-Native Applications



In practice, you will need to monitor and control
containers. As your application grows, the
number of containers you need to manage and
control can become out of hand and complexity
follows. That’s when container or cloud
orchestrators comes in. They are the tools that
can help you monitor and manage container
clustering and scheduling in the cloud more
efficiently.

Cloud orchestrators function like a datacenter
operating system administrator that manages
cloud resources for containerized applications
across different environments. They essentially

Microservices describe an architecture in which
applications are broken down into their smallest
components or services. Microservices is a
decomposition technique that aims to split
complex systems into multiple independent,
narrowly focused services. These services also
have their isolated business logic and data
store. The central idea behind a microservices
architecture is that applications are simpler to
build, modify, and maintain these smaller
services.

Orchestration Technology
take care of deploying your containers,
scheduling, scaling, networking, and all the
things related to sysadmins in an automated,
programmable way. These benefits mean that
developers no longer need to worry about where
their applications run. Instead, they can focus on
the business logic by simply deploying on
orchestration platforms, such as Kubernetes, to
take care of the rest.

Microservices Technology
These smaller pieces are loosely coupled, which
provides the capability to run at scale with
interchangeable pieces that snap into the
application architecture. Additionally, the built-in
space for extensibility in a microservices
architecture has enabled developers to rapidly
push out new features and updates or roll them
back should they not work as planned.

9Common Open Source Practices in Developing Cloud-Native Applications



Additionally, microservices enable developers
from different teams to simultaneously work on
modules, while enhancing the overall system’s
performance and uptime without the risk of
affecting the other teams.

A successful Cloud-Native application is built on
a well-designed paradigm of microservices.
However, deciding what those microservices
should be, where the boundaries are, and how
the different services should interact is a difficult
task.

Consider that the microservices approach is the
recipe that developers follow to design their
applications in a distributed manner according to
the principles of scalability, flexibility, and
resilience. The lightweight containers then wrap
around the microservices-based applications
and run in environments different from the
development stages, thus accelerating
application deployment cycles and increasing
network agility.

Next, a container orchestrator, acting as the
system administrator, directs and manages the
collection of containers, ensuring the
applications are run smoothly without
interruption or downtime and can automatically
scale up when needed. The orchestrator can

As a common practice, developers will resort to
a suitable microservices framework to avoid
building everything from top to bottom, thus
saving time and cost.

Putting the Technologies Together
then start the containers with the new version,
wait until they become healthy, and then shut
down the old ones if necessary.

Together, the three innovations discussed above
establish the technological foundation for
building Cloud-Native applications that are
automatable, flexible, resilient and scalable.

10Common Open Source Practices in Developing Cloud-Native Applications



Cloud-Native Tools Overview



Now that we understand the benefits that come with containers, container orchestration, and
microservices, we will go into the best practices or options in these technological fields. In addition
to introducing the options offered in the market, we will explore the characteristics of different
projects that have made them optimal for Cloud-Native applications.

While Docker is not the only container platform
out there, it indeed has risen to massive
prominence over the past few years. What
makes Docker so popular? As an open source
project, Docker has an appeal in the technology
market, which is seeing open source as the de
facto way for software production. Docker
enables developers to easily pack, ship, and run
any applications as a lightweight, portable, self-
sufficient container, and a collection of
containers take up less space, handle more
applications, and use fewer system resources.

Additionally, Docker has revolutionized
application virtualization and been cited as a
leader in the enterprise container platform
category. As a software platform for building
applications based on containers, Docker stands
out from previous approaches because it has
made containers easier and safer to deploy and
use.

Docker also brings cloud-like flexibility to
infrastructures capable of running containers.
Docker’s container image tools allow developers
to build libraries of images, compose
applications from multiple images, and launch
those containers and applications on local or
remote infrastructure. Further, Docker has
helped popularize the technology and drive the
trend of containerization in software
development. Docker’s key open source
component, libcontainer is a product from its
partnerships with other container powers,
including Canonical, Google, Red Hat, and
Parallels, bringing wider recognition and
standardization to containers in the industry.

Containers

12Common Open Source Practices in Developing Cloud-Native Applications



There are three major cloud container
orchestration programs in the technology
market, which are Docker Swarm, Kubernetes,
and Mesosphere. While all three of them exist
and can serve as alternatives for one another
today, Kubernetes has become the most
dominant cloud orchestration program since
2017.

Originally open sourced by Google and now
maintained by the Cloud-Native Computing
Foundation, Kubernetes serves as an
infrastructure platform that manages all
infrastructures on-premise and in the cloud and
containerized workloads and services.

The support for Kubernetes is becoming
universal. Major platforms such as Docker and
Amazon Web Services (AWS) have moved to
support Kubernetes. Moreover, organizations
often find that Kubernetes and Docker’s pairing
is the best option when moving large
containerized workloads into production.

However, Kubernetes typically comes with a
steeper learning curve for most users. It isn’t a
silver bullet for all things microservices and
containers when building Cloud-Native
applications.

Orchestration

Kubernetes can also automate many traditional
sysadmin tasks like upgrading servers, installing
security patches, configuring networks, and
running backups, making these less of a
concern for developers in the Cloud-Native
world. There are some features such as load
balancing and autoscaling (support demand
spikes) built into the Kubernetes core, and you
can incorporate other features on the
Kubernetes platform by using add-ons,
extensions, and third-party tools that use the
Kubernetes API.

13Common Open Source Practices in Developing Cloud-Native Applications



When building microservices platforms,
organizations should choose a microservices
framework that can optimize their business
value.

Service governance and multiple language
support are the major criteria to select an
optimal microservices framework for enterprises.
This is because the modular nature of
microservices means that multiple teams would
collaborate to create a single microservices
application, so it is possible that they would use
different programming languages in developing
services of a single application.

With this in mind, let’s consider a few popular options for microservices frameworks. Unlike Docker and
Kubernetes which have won prominence in their respective areas, there are several methods to
achieve microservices with different features to consider.

Microservices

Service mesh: multi-language 
framework with service governance 
through the sidecar pattern 

14Common Open Source Practices in Developing Cloud-Native Applications

Given the enormous size of Cloud-Native
applications, multiple language support is
indispensable in a microservice framework
during the development stage. Service
governance is also an important feature because
the failure to implement proper governance
mechanisms can result in an unmanageable and
unstable architecture.

Microservices Framework

Examples include Istio. 

Single language framework with 
service governance
Spring Cloud is one such example and only 
supports Java.

Single language, no service 
governance framework, but with 
RPC (Remote Procedure Call)

Examples include gRPC and Thrift.

Multi-language/Governance framework

TARS is an open source full-fledged 
microservices framework that fulfills both criteria.



The first two categories represented by gRPC
and Spring Cloud have limitations when applied
to actual scenarios and development
environments. Because each programming
language can have advantages in terms of
performance and portability, introducing a multi-
language microservices framework can optimize
the technology stacks used by

Service mesh reduces the complexity
associated with a microservice architecture and
provides a lot of the functionalities such as load
balancing, service discovery, traffic management
and routing, etc.

A service mesh enables developers to have
observability of the communications layers and
to gain full control of all microservices
communication logic. However, the infrastructure
layer introduced by a service mesh increases
the complexity of the architecture and its
maintenance.

developers and increase scalability in addition to
allowing cross-functional teams to collaborate.
Thus, multilingual frameworks such as TARS
and Istio are preferred especially in the Cloud-
Native era.

It is important to note that service mesh such as
Istio can be viewed as a derivative of
microservices architecture. Istio, as a dedicated
infrastructure layer built into the application,
focuses on managing all service-to-service
communications between different parts. Istio
uses “sidecar” proxies (Figure 1) that are
deployed alongside each service through which
all traffic is transparently routed.

Figure 1: Service Mesh Pattern 

15Common Open Source Practices in Developing Cloud-Native Applications

Service Mesh



The drawbacks of gRPC, Spring Cloud, and
Istio, as discussed previously, perhaps have
cultivated the rise of TARS, which aims to
address common problems when building
microservices.

A mature, full-fledged enterprise solution for
microservice maintenance, development and
operation, TARS has been used by companies
for more than 12 years, and it was open sourced
in 2018. TARS is an open source cross-
language RPC framework based on name
service and Tars protocols, as well as an
integrated administration platform, which
implements hosting-service via a flexible
schedule.

Additionally, TARS enables users to execute
procedures remotely and supports multiple
languages including C++, Java, Node.js, PHP
and Python. It is also a rapid build system and
automatic code generation that target agile
development.

TARS' service governance not only involves the
commonly needed functions such as service
registration, discovery, load balance, and fault
tolerance, but also provides special governance
capabilities to face massive access and system
overload. Figure 2 is an illustration of the TARS
microservices ecosystem.

Figure 2: TARS Microservices Ecosystem

16Common Open Source Practices in Developing Cloud-Native Applications

TARS: A Microservices Ecosystem

https://www.linuxfoundation.org/press-release/2018/06/tars-and-tseer-form-open-source-project-communities-under-the-linux-foundation-to-expand-adoption-and-pace-of-development/


A Closer Look at Cloud-Native Practices



Using a microservices framework that supports
multiple programming languages and solves
service governance problems would be the most
ideal for organizations based on common best
practices.

In the Cloud-Native context, Kubernetes have
arguably become the gold standard for
container-based DevOps + microservices +
containers. The integration of Kubernetes has
become a general direction for many
microservice frameworks to improve their
functions.

Hence, developers need to consider many
factors before choosing an option to manage
different functionalities related to microservices
in Kubernetes, such as service-to-service
communication, which is a challenge.

In order to introduce some essential features
that developers should consider, we will
illustrate the characteristics of using Istio with
Kubernetes and K8STARS, a Kubernetes
solution by TARS.

Istio

Deploying Microservices with Kubernetes

18Common Open Source Practices in Developing Cloud-Native Applications

Service mesh is an approach that essentially
takes the logic that is governing service-to-
service communication out of individual services
and abstracts it to a layer of infrastructure. Istio
is composed of a control plane and data plane.
The control plane contains the basic
components ensuring that correct interaction
between the other components. The data plane
is responsible for all the communication between
services in a microservice system using sidecar
proxies.

Istio deploys a sidecar proxy that sits alongside
a microservice and routes requests to and from
other proxies.

As a whole, these proxies form a mesh network
that can manage communication between
microservices. With Istio, development and
operations can be better equipped to conduct
the migration from monolithic applications to
Cloud-Native apps.

To demonstrate the Cloud-Native application of the aforementioned tools, we will also present a
discussion about deploying microservices with Kubernetes.



Istio Characteristics

● Traffic management: Istio provides traffic
routing and rules configuration, allowing you
to control the flow of traffic and API calls
between services.

● Security: Istio has the underlying
communication channel and authentication,
authorization, and encryption of service
communication at scale.

● Observability: Istio provides insights into
your service mesh deployment with Istio’s
tracing, monitoring, and logging features. It
lets you see how service activity impacts
performance upstream and downstream.
There are also custom dashboards that
provide visibility into the performance of all
your services.

minimal application changes. When using Istio
with Kubernetes (or infrastructure) network
policies, the benefits include the ability to secure
pod-to-pod or service-to-service communication
at the network and application layers.

Unlike Istio, TARS is a full-fledge, mature
microservices development solution that
supports agile development, multiple
programming languages, and many more. It has

released a solution to support Kubernetes,
integrating both technologies to build an option,
K8STARS, to develop Cloud-Native applications.

TARS

Istio is very well integrated into Kubernetes, both
in standalone Kubernetes environments as well
as managed Kubernetes offerings from major
cloud providers. Istio uses an extended version
of the envoy proxy and deploys it alongside
each microservice pod in Kubernetes
environments.

With Istio, you can enforce policies consistently
across multiple protocols and runtimes with

19Common Open Source Practices in Developing Cloud-Native Applications



TARS Characteristics
● Multiple programming languages,

including C++, Golang, Java, Node.js, PHP
and Python, can be combined with various
CI/CD tools.

● Services can be deployed on different
environments, such as physical machines,
virtual machines, containers, Kubernetes,
and data can be stored in Cache, database
or file system.

● Supports multiple protocols, such as self-
developed TARS protocol and TUP protocol,
as well as SSL, HTTP, PB, etc., commonly
used in the industry. In addition, you can
customize the protocol.

● RPC, synchronous, asynchronous and one-
way methods can be used in RPC calls.

● Supports many service management
functions, including but not limited to
service registration/discovery, load
balancing, custom monitoring, logging,
overload protection, fuse mechanism, IDC
SET, etc.

● Supports a wide range of applications,
such as deep learning, edge computing and
API gateways.

K8STARS is a native Kubernetes solution for
TARS services. It retains the naming service,
high-performance RPC and service
management functions of TARS, and integrates
the resource scheduling capabilities of

Kubernetes, making TARS more Cloud-Native
suitable. In the concept of microservices, using
containers as infrastructure can achieve rapid
deployment and rapid iteration.

K8STARS

K8STARS Characteristics

● Built-in development capability of TARS.

● Automatic registration and configuration deletion of name service for TARS.
● Support smooth migration of existing TARS services to K8S and other container platforms.

● Non-intrusive design, no coupling with the operating environment.

20Common Open Source Practices in Developing Cloud-Native Applications



Because Kubernetes supports automatic
scheduling, better version management can be
achieved based on Docker images. TARS
supports gateway traffic in the naming service
part, which can quickly shield problems when

a single point of failure is found, and
configuration management is more suitable for
use in a production environment.

Note that all of the common practices and tools
discussed above have risen to prominence in
Cloud-Native applications as open source
projects, which are maintained by open source
developers and advocates.

Although these development tools might not be
the ultimate solution to everything, they are
rapidly updating and upgrading through the open
source approach.

It is the collective effort of the wider open source
community of many extremely talented
developers who exchange ideas and feedback
on using these technologies that make open
source software continuously meet market
demands and build the most business value.

Cloud-Native Innovations based on Open Source

21Common Open Source Practices in Developing Cloud-Native Applications



Conclusion: Cloud-Native Innovations from 
an Open Source Perspective



The emergence of Cloud-Native applications
has successfully helped enterprises cope with
the ever-evolving user expectations. As the
foundation for the Cloud-Native ecosystem,
technological innovations and practices, such as
Docker, Kubernetes, Istio, TARS, etc., have
come a long way to become mature and
popularized. Most of the popular technologies
mentioned here are open source projects, and it
is clear that the open source model of software

Moreover, open source software displays
several distinct business advantages, including
cost reduction, speed to market, collaborative
market advantages, code improvements,
increased efficiency, and innovation jumpstarts.
Thus, it is expected to see open source
technologies as the driving force in Cloud-Native
implementation and innovation.

Open source software has also proven to be the
building block for many business successes.
This is mostly due to the collaborative nature of

Open Source Collaboration Enables Innovations

open source projects. It is a group of dedicated
developers in the global open source community
that create credibility and confidence in open
source software. Open source is where
enterprises can find business competitive
advantages in the technology market.

production has become the standard of the
industry.

Open source communities have provided a
platform for enterprise-level technologies to
thrive and improve via the collaboration of
developers from different backgrounds, which
can infuse new perspectives into the software
and caters to different production demands.

Business Advantages of Open Source

23Common Open Source Practices in Developing Cloud-Native Applications



The development of Cloud-Native cannot
happen without open source technology. As
Cloud-Native migration becomes more
prevalent, more businesses will be incorporating
the open source software, and enterprises
around the world will continue to place great
value on the open source community.

We have explored some well-known Cloud-
Native technologies and the open source tools
available for Cloud-Native transformation. As
you navigate through your Cloud-Native journey,
we hope this eBook has helped you grasp
Cloud-Native applications better and how the
open source model can shape the future of
technology.

An Open Source, Cloud-Native Future

24Common Open Source Practices in Developing Cloud-Native Applications



References

What is Docker?
https://www.docker.com/why-docker

What is Kubernetes?
https://kubernetes.io/docs/home/

What is Istio?
https://istio.io/latest/docs/concepts/

What is TARS? 
https://github.com/TarsCloud/TarsDocs_en

What is K8STARS: 
the Kubernetes native solution for TARS services? 
https://github.com/TarsCloud/K8STARS

Why open source software 
matters to your enterprise?
https://www.linuxfoundation.org/tools/todo-group-why-open-source-
matters-to-your-enterprise/

Common Open Source Practices in Developing Cloud-Native Applications



https://github.com/TarsCloud

https://twitter.com/TarsCloud

Official Account: TarsCloud 

tars@tarscloud.org

https://tarscloud.org

Follow Us

Common Open Source Practices in Developing Cloud-Native Applications

The TARS Foundation is a nonprofit, open
source microservice foundation under the
Linux Foundation umbrella to support the
rapid growth of contributions and
membership for a community focused on
building an open microservices platform. It
focuses on open source technology that
helps businesses embrace microservices
architecture as they innovate into new areas
and scale their applications. It continues to
work on addressing the problems that may
occur in using microservices and wishes to
accommodate a variety of bottom-up content
to build a better microservice ecosystem.

About the 
TARS Foundation



FREE 
Microservices Training 

Building Microservice Platforms with TARS

Our training course is available on edX for FREE.

Scan the QR code or click on the link and 

Enroll Now!

https://www.edx.org/course/building-microservice-platforms-with-tars

Common Open Source Practices in Developing Cloud-Native Applications


